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Abstract
Background: Convolutional neural networks (CNN) have achieved remark-
able success in medical image analysis. However, unlike some general‐domain
tasks where model accuracy is paramount, medical applications demand both
accuracy and explainability due to the high stakes affecting patients' lives.
Based on model explanations, clinicians can evaluate the diagnostic decisions
suggested by CNN. Nevertheless, prior explainable artificial intelligence
methods treat medical image tasks akin to general vision tasks, following end‐
to‐end paradigms to generate explanations and frequently overlooking crucial
clinical domain knowledge.
Methods: We propose a plug‐and‐play module that explicitly integrates
anatomic boundary information into the explanation process for CNN‐based
thoracopathy classifiers. To generate the anatomic boundary of the lung pa-
renchyma, we utilize a lung segmentation model developed on external public
datasets and deploy it on the unseen target dataset to constrain model ex-
planations within the lung parenchyma for the clinical task of thoracopathy
classification.
Results: Assessed by the intersection over union and dice similarity coeffi-
cient between model‐extracted explanations and expert‐annotated lesion
areas, our method consistently outperformed the baseline devoid of clinical
domain knowledge in 71 out of 72 scenarios, encompassing 3 CNN architec-
tures (VGG‐11, ResNet‐18, and AlexNet), 2 classification settings (binary and
multi‐label), 3 explanation methods (Saliency Map, Grad‐CAM, and Integrated
Gradients), and 4 co‐occurred thoracic diseases (Atelectasis, Fracture, Mass,
and Pneumothorax).
Conclusions: We underscore the effectiveness of leveraging radiology
knowledge in improving model explanations for CNN and envisage that it
could inspire future efforts to integrate clinical domain knowledge into
medical image analysis.

Abbreviations: AUPRC, area under the precision recall curve; CNN, convolutional neural networks; DL, deep learning; DSC, dice similarity
coefficient; IoU, intersection over union; SGD, stochastic gradient descent; XAI, explainable artificial intelligence.
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1 | INTRODUCTION

In the last decade, convolutional neural networks (CNN)
have reshaped the diagnostic process of thoracopathy due
to their revolutionary accuracy [1]. However, clinicians
still cannot fully trust their predictive decisions on pro-
spective medical practice because of their black‐box
characteristics and the high stakes affecting patients'
lives [2]. Based on model explanations of their inference
logic, clinicians can evaluate and correct the predictions
made by CNN [3]. Therefore, various explainable artifi-
cial intelligence (XAI) methods, such as Saliency Map [4],
Grad‐CAM [5], and Integrated Gradients [6], have been
proposed to highlight the important pixels (regions) to-
ward CNN decisions [7]. These heatmaps are provided to
clinicians to assess whether the model accurately focuses
on clinically relevant regions, such as lesion areas, and to
determine the suitability of adopting the model's sug-
gestions [8].
Thoracopathy comprises conditions of the heart,

lungs, mediastinum, esophagus, chest wall, diaphragm,
and great vessels [9]. In this study, we focus on four co‐
occurring thoracic diseases: Atelectasis, Fracture, Mass,
and Pneumothorax [10–12]. Conventional clinical diag-
nosis is based on the clinician's manual evaluation of
chest radiographs while multiple CNN‐based models
have been proposed to automate this process in the deep
learning (DL) era. For example, Chen et al. [13] used two
asymmetric CNNs of DenseNet [14] and ResNet [15] to
learn complementary features and implemented thoracic
disease classification in chest X‐rays. However, prior
research efforts have primarily followed the end‐to‐end
paradigm in both stages of classification and explana-
tion [16], neglecting the clinical domain knowledge that
thoracic diseases mainly occur in the lung parenchyma
[17–20]. Prior studies have noticed this gap and presented
the enhancement of accuracy through the incorporation
of clinical domain knowledge [21]. For example, Jung
et al. [22] introduced a spatial attention mechanism to
highlight potential disease areas, generating disease
masks with precise probability distributions based on
112,120 chest radiographs across 14 disease types. How-
ever, this approach may be impractical for resource‐
limited settings with smaller datasets and scarce disease
labels. A comparable attention mechanism was incorpo-
rated into Thorax‐Net [23], which consisted of both a
classification branch and an attention branch that were

assembled to produce the final diagnosis. As with the
prior method, training the attention module required
large‐scale annotated datasets. Furthermore, the study
presented only qualitative visualizations without
providing quantitative evaluations of the heatmap‐based
pathological abnormal regions.
To explore the effectiveness of incorporating clinical

domain knowledge to enhance the model explanations of
CNN‐based thoracopathy classifiers, we propose a plug‐
and‐play module to constrain the model explanations
within the lung parenchyma, tailored for resource‐
limited environments. To obtain the lung parenchyma,
we adopt transfer learning to develop an external lung
segmenter from external public datasets. This transfer
learning strategy effectively reduces annotation costs
associated with unseen target datasets and facilitates
deployment on datasets with small sample sizes, where
comprehensive annotation of all lung parenchyma sam-
ples may not guarantee the convergence of the lung
segmentation model. Quantitatively assessed on 3 CNN
architectures, 3 XAI methods, 4 thoracic diseases, and 2
classification settings, the proposed approach consistently
outperformed the baseline model explanations devoid of
domain knowledge. This study underscored the effec-
tiveness of radiology knowledge in improving model ex-
planations for CNN and we envisage that it could inspire
future efforts to integrate clinical domain knowledge into
medical image analysis [24–26].

2 | MATERIALS AND METHODS

2.1 | Datasets

We conducted a comprehensive evaluation of XAI‐based
model explanations and demonstrated the effectiveness
of the proposed method by utilizing the public dataset of
ChestX‐Det [27]. We extracted 611 healthy samples and
880 samples were diagnosed with at least one of the four
correlated thoracic diseases, including Atelectasis, Frac-
ture, Mass, and Pneumothorax. All chest radiographs
were resized to the resolution of 224 � 224 pixels to meet
the requirements of most pre‐trained DL backbones. In
addition to binary diagnostic labels indicating the pres-
ence or absence of thoracic diseases, clinical experts
enriched this dataset with pixel‐level lesion annotations
for each disease. Pixel‐level lesion annotations were
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utilized solely for evaluating model explanations, while
the training of CNN classifiers relied exclusively on
image‐level diagnostic labels. We randomly split the
extracted samples into training, validation, and test
datasets at 60: 20: 20, and Table 1 shows the precise
number of samples for each category. Training and vali-
dation datasets were used to develop thoracopathy clas-
sifiers while the test dataset was used to evaluate
classification and explanation performances of the
developed classifiers and XAI methods. Two classifica-
tion settings were explored for each disease: The first
targeted training a multi‐label classifier for all 4 diseases
based on the entire training and validation datasets; The
second scenario entailed training individual binary clas-
sifiers for each disease, using solely healthy samples and
diseased samples diagnosed with the respective disease.

2.2 | CNN‐based thoracopathy
classification

Given the dataset containing small‐scale samples, we
developed thoracopathy classifiers using three lightweight
CNN backbones: VGG‐11 [28], ResNet‐18 [15], and Alex-
Net [29]. The rationale for selecting these shallow‐
layer backbones was to mitigate overparameterization,
given the limited size of our training set [16, 30], and to
address potential spatial information loss in XAI when

interpretingCNNarchitectureswith deeper layers [16, 31].
For model training, we employed stochastic gradient
descent (SGD) [32] with a learning rate of 0.001, a mo-
mentum of 0.9, and a decay of 0.9 with a patience param-
eter of 10. Inverse probability weights were introduced in
the training of both binary and multi‐label classifiers to
eliminate the impact of dominating classes [33, 34]. Each
CNN model underwent training for 100 epochs and was
evaluated on the test dataset. Due to data imbalance, the
areaunder the precision recall curve (AUPRC)was utilized
as the primary evaluation metric for model classification
[35]. Additional assessments included accuracy, precision,
and recall. For all metrics, the standard deviation was
calculated using bootstrapped samples from the test data-
set to ensure comprehensive reporting [36].

2.3 | XAI for CNN‐based thoracopathy
classifiers

To explain the model decision logic behind the trained
classifiers, various XAI methods were applied to derive
each pixel's importance towards the model's predictive
classification and the focus areas were further outlined by
aggregating the most significant pixels with the top 5% of
importance. In this study, we utilized three pixel‐level XAI
techniques of Saliency Map [4], Grad‐CAM [5], and Inte-
grated Gradients [6] because of their representativeness

TABLE 1 An overview of the data split in thoracopathy classification tasks.

Thoracopathy

Training set Validation set Test setAtelectasis Fracture Mass Pneumothorax

✓ ✓ ✓ ✓ 0 0 0

✓ ✓ ✓ 0 1 0

✓ ✓ ✓ 1 0 1

✓ ✓ ✓ 0 0 0

✓ ✓ 23 8 7

✓ ✓ 6 2 2

✓ ✓ 12 4 4

✓ ✓ 10 3 3

✓ ✓ 26 9 8

✓ ✓ 6 2 2

✓ 136 45 45

✓ 173 58 58

✓ 67 22 22

✓ 68 23 23

No thoracopathy 367 122 122
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and wide application as the baseline XAI algorithms [37]
and compared the focus areas with the ground truth lesion
areas based on the intersection over union (IoU) and dice
similarity coefficient (DSC), accompanied by their boot-
strapped standard deviations.

2.4 | Anatomic boundary‐aware model
explanation

According to clinical domain knowledge [22], thoracic
diseases occur in the lung parenchyma on a 2D projection
of a chest radiograph, and therefore, the model explana-
tions should be constrainedwithin the anatomic boundary
of the lung parenchyma. Figure 1 outlines the proposed
methodwhich develops an auxiliary lung segmenter based
on the external lung segmentation dataset of the Japanese
Society of Radiological Technology dataset [38], the
Shenzhen dataset [39], and the Montgomery County
dataset [39]. The training configuration for the lung seg-
mentationmodel was consistent with that of thoracopathy
classifiers elaborated above, but the segmentation model
employed a U‐Net architecture [40] with a VGG‐11 back-
bone [28] specifically designed for image segmentation
tasks. Upon the completion of segmenter training, each
chest radiograph from the unseen target dataset was sup-
plemented with a boundary constraint. This boundary
constraint enforced the model focus area within the pre-
dicted lung region to enhance themodel explanations. The
post hoc nature of this method enables seamless integra-
tion with any XAI technique, allowing for a straightfor-
ward plug‐and‐play application without complex

modifications. For reproduction, the code has been pub-
licly released on GitHub (https://github.com/Han‐Yuan‐
Med/constrained‐explanation).

3 | RESULTS

First, we quantitatively showed the performance of various
CNN backbones in different classification settings in
Table 2. VGG‐11 consistently outperformedResNet‐18 and
AlexNet across scenarios concerning AUPRC, accuracy,
and inmost scenarios, precision. Thehighest average recall
of 0.676 was achieved by ResNet‐18, surpassing VGG‐11's
0.619 and AlexNet's 0.546.We also investigated binary and
multi‐label classification scenarios to assess whether
additional information improves the discriminative capa-
bility of CNN classifiers. Binary classifiers showcased su-
perior performance in terms of AUPRC, precision, and in
most scenarios, accuracy compared to multi‐label classi-
fiers. Nonetheless, multi‐label classifiers demonstrated an
average recall of 0.628, marginally better than the 0.596
achieved by binary classifiers.
Tables 3–6 show the explanation performance of

VGG‐11, ResNet‐18, and AlexNet utilizing different XAI
methods for various thoracic diseases under binary or
multi‐label settings.
The binary VGG‐11 model with boundary‐aware Sa-

liency Map achieved optimal explanation performance for
Atelectasis, while the binary AlexNet model utilizing
boundary‐aware Grad‐CAM excelled in Fracture classifi-
cation explanation, the binary ResNet‐18 with boundary‐
aware Grad‐CAM demonstrated superior explanation

F I GURE 1 Schematic diagram of the proposed boundary‐aware explanation. These figures are open‐access from Deepwise AI Lab
under the Apache‐2.0 license, permitting use, modification, and distribution. CNN, convolutional neural networks; XAI, explainable
artificial intelligence.
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performance for Mass, and the multi‐label AlexNet model
employed boundary‐aware Saliency Map for Pneumo-
thorax. Also, anatomic boundary‐aware explanations
consistently exhibited improvements in IoU and DSC
compared to baseline explanations, except for the Grad‐
CAM explanation of VGG‐11 in multi‐label Fracture clas-
sification. Additionally, binary classifiers outperformed
multi‐label classifiers in 26 out of 36 scenarios for baseline
explanations and in 25 out of 36 scenarios for anatomic
boundary‐aware explanations. Lastly, although boundary‐
aware XAImethods produced the best explanation results,
the anatomic boundary without any classification training
showcased even better performance than classifier‐based
explanations in certain scenarios. Particularly in Frac-
ture, only 4 classifier‐based explanations achieved better
IoU and DSC compared to the training‐free boundary.

To provide a comparative visualization of model ex-
planations with and without anatomic boundary,
Figures 2–4 depict visual comparisons of Saliency Map,
Grad‐CAM, and Integrated Gradients based on binary
VGG‐11 classifiers. The images from the first to the fifth
column are original images, ground‐truth lesion area,
anatomic boundary, baseline explanation, and boundary‐
aware explanation. Compared with baseline explana-
tions, the anatomic boundary constrained model expla-
nations within the lung parenchyma and therefore
enhanced the consistency between the ground truth
lesion regions and model explanations of focus areas.
Additionally, we performed an extensive analysis to

examine how the quality of anatomic boundaries influ-
ence boundary‐aware XAI performance. Specifically, we
saved intermediate checkpoints of the segmentation

TABLE 2 Thoracopathy classification performance of VGG‐11 and ResNet‐18 on the test set.

Disease Model Setting AUPRC Accuracy Precision Recall

Atelectasis VGG‐11 Binary 0.845 (0.041) 0.851 (0.023) 0.758 (0.053) 0.797 (0.043)

Multi‐label 0.494 (0.046) 0.729 (0.020) 0.373 (0.046) 0.517 (0.068)

ResNet‐18 Binary 0.708 (0.053) 0.762 (0.031) 0.608 (0.055) 0.763 (0.047)

Multi‐label 0.382 (0.055) 0.569 (0.024) 0.296 (0.028) 0.833 (0.043)

AlexNet Binary 0.630 (0.064) 0.720 (0.038) 0.560 (0.055) 0.700 (0.055)

Multi‐label 0.294 (0.053) 0.635 (0.031) 0.257 (0.044) 0.433 (0.064)

Fracture VGG‐11 Binary 0.873 (0.031) 0.819 (0.028) 0.860 (0.043) 0.636 (0.064)

Multi‐label 0.570 (0.033) 0.599 (0.024) 0.364 (0.031) 0.696 (0.058)

ResNet‐18 Binary 0.549 (0.055) 0.598 (0.034) 0.485 (0.047) 0.623 (0.053)

Multi‐label 0.276 (0.057) 0.599 (0.028) 0.215 (0.037) 0.816 (0.056)

AlexNet Binary 0.648 (0.056) 0.650 (0.031) 0.538 (0.042) 0.731 (0.045)

Multi‐label 0.326 (0.033) 0.619 (0.026) 0.345 (0.039) 0.494 (0.053)

Mass VGG‐11 Binary 0.528 (0.096) 0.768 (0.033) 0.385 (0.101) 0.345 (0.098)

Multi‐label 0.404 (0.043) 0.408 (0.027) 0.107 (0.021) 0.667 (0.082)

ResNet‐18 Binary 0.236 (0.058) 0.609 (0.037) 0.266 (0.057) 0.586 (0.098)

Multi‐label 0.150 (0.037) 0.786 (0.021) 0.207 (0.048) 0.400 (0.084)

AlexNet Binary 0.187 (0.038) 0.563 (0.043) 0.206 (0.057) 0.448 (0.098)

Multi‐label 0.086 (0.018) 0.144 (0.018) 0.102 (0.016) 0.967 (0.027)

Pneumothorax VGG‐11 Binary 0.843 (0.048) 0.894 (0.021) 0.769 (0.072) 0.789 (0.060)

Multi‐label 0.398 (0.054) 0.726 (0.022) 0.232 (0.051) 0.500 (0.094)

ResNet‐18 Binary 0.411 (0.078) 0.619 (0.035) 0.328 (0.056) 0.579 (0.086)

Multi‐label 0.276 (0.057) 0.599 (0.028) 0.215 (0.037) 0.816 (0.056)

AlexNet Binary 0.254 (0.044) 0.688 (0.032) 0.250 (0.087) 0.158 (0.053)

Multi‐label 0.129 (0.030) 0.632 (0.029) 0.147 (0.027) 0.395 (0.067)

Note: The evaluation metrics are presented, accompanied by their respective standard errors enclosed within parentheses.
Abbreviation: AUPRC, area under the precision recall curve.
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TABLE 3 Atelectasis explanation performance of CNN models by various XAI methods on the test dataset.

Disease Model Setting XAI IoU DSC

Atelectasis VGG‐11 Binary Saliency map 5.69 (0.51) 10.44 (0.92)

Saliency map þ boundary 5.89 (0.54) 10.69 (0.94)

Multi‐label Saliency map 1.92 (0.38) 3.61 (0.66)

Saliency map þ boundary 3.84 (0.51) 7.09 (0.89)

Binary Grad‐CAM 1.63 (0.48) 2.93 (0.82)

Grad‐CAM þ boundary 2.74 (0.59) 4.95 (1.05)

Multi‐label Grad‐CAM 1.49 (0.38) 2.74 (0.69)

Grad‐CAM þ boundary 1.76 (0.64) 3.17 (1.07)

Binary Integrated gradients 3.81 (0.36) 7.18 (0.64)

Integrated gradients þ boundary 4.92 (0.51) 9.05 (0.84)

Multi‐label Integrated gradients 0.99 (0.26) 1.91 (0.48)

Integrated gradients þ boundary 3.29 (0.51) 6.09 (0.89)

ResNet‐18 Binary Saliency map 2.28 (0.33) 4.36 (0.61)

Saliency map þ boundary 3.56 (0.46) 6.59 (0.77)

Multi‐label Saliency map 3.80 (0.46) 7.07 (0.82)

Saliency map þ boundary 4.56 (0.56) 8.29 (0.94)

Binary Grad‐CAM 4.12 (0.77) 7.41 (1.35)

Grad‐CAM þ boundary 4.42 (0.71) 7.91 (1.22)

Multi‐label Grad‐CAM 3.77 (1.07) 6.31 (1.63)

Grad‐CAM þ boundary 5.55 (0.99) 9.73 (1.66)

Binary Integrated gradients 2.82 (0.36) 5.32 (0.64)

Integrated gradients þ boundary 3.56 (0.46) 6.61 (0.79)

Multi‐label Integrated gradients 4.08 (0.54) 7.51 (0.89)

Integrated gradients þ boundary 4.67 (0.56) 8.46 (0.97)

AlexNet Binary Saliency map 2.94 (0.41) 5.49 (0.77)

Saliency map þ boundary 4.43 (0.69) 7.96 (1.15)

Multi‐label Saliency map 0.01 (0.00) 0.03 (0.03)

Saliency map þ boundary 0.92 (0.31) 1.74 (0.59)

Binary Grad‐CAM 1.21 (0.33) 2.21 (0.61)

Grad‐CAM þ boundary 4.42 (1.10) 7.29 (1.61)

Multi‐label Grad‐CAM 0.08 (0.05) 0.16 (0.08)

Grad‐CAM þ boundary 0.86 (0.26) 1.62 (0.46)

Binary Integrated gradients 1.77 (0.31) 3.36 (0.61)

Integrated gradients þ boundary 3.95 (0.59) 7.21 (1.02)

Multi‐label Integrated gradients 0.01 (0.00) 0.02 (0.03)

Integrated gradients þ boundary 1.14 (0.36) 2.16 (0.61)

— Boundary 3.80 (0.66) 6.89 (1.10)

Note: The evaluation metrics are presented, accompanied by their respective standard errors enclosed within parentheses.
Abbreviations: CNN, convolutional neural networks; DSC, dice similarity coefficient; IoU, intersection over union; XAI, explainable artificial intelligence.
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TABLE 4 Fracture explanation performance of CNN models by various XAI methods on the test dataset.

Disease Model Setting XAI IoU DSC

Fracture VGG‐11 Binary Saliency map 0.40 (0.05) 0.79 (0.10)

Saliency map þ boundary 0.94 (0.15) 1.85 (0.26)

Multi‐label Saliency map 0.29 (0.08) 0.58 (0.20)

Saliency map þ boundary 0.86 (0.18) 1.67 (0.33)

Binary Grad‐CAM 0.38 (0.15) 0.73 (0.31)

Grad‐CAM þ boundary 1.40 (0.48) 2.43 (0.79)

Multi‐label Grad‐CAM 0.51 (0.15) 0.98 (0.28)

Grad‐CAM þ boundary 0.46 (0.13) 0.89 (0.23)

Binary Integrated gradients 0.28 (0.05) 0.56 (0.10)

Integrated gradients þ boundary 0.85 (0.15) 1.66 (0.28)

Multi‐label Integrated gradients 0.15 (0.05) 0.30 (0.10)

Integrated gradients þ boundary 0.93 (0.20) 1.80 (0.41)

ResNet‐18 Binary Saliency map 0.77 (0.10) 1.51 (0.23)

Saliency map þ boundary 1.62 (0.23) 3.10 (0.41)

Multi‐label Saliency map 0.58 (0.10) 1.15 (0.15)

Saliency map þ boundary 1.29 (0.18) 2.51 (0.36)

Binary Grad‐CAM 1.52 (0.33) 2.82 (0.59)

Grad‐CAM þ boundary 2.27 (0.46) 4.19 (0.84)

Multi‐label Grad‐CAM 0.35 (0.15) 0.66 (0.28)

Grad‐CAM þ boundary 1.18 (0.31) 2.20 (0.56)

Binary Integrated gradients 0.54 (0.08) 1.06 (0.15)

Integrated gradients þ boundary 1.24 (0.20) 2.38 (0.38)

Multi‐label Integrated gradients 0.37 (0.05) 0.73 (0.13)

Integrated gradients þ boundary 0.96 (0.18) 1.87 (0.36)

AlexNet Binary Saliency map 0.41 (0.10) 0.80 (0.20)

Saliency map þ boundary 1.38 (0.31) 2.60 (0.56)

Multi‐label Saliency map 0.22 (0.08) 0.41 (0.18)

Saliency map þ boundary 1.21 (0.23) 2.32 (0.41)

Binary Grad‐CAM 0.10 (0.08) 0.20 (0.13)

Grad‐CAM þ boundary 1.94 (0.54) 3.51 (0.94)

Multi‐label Grad‐CAM 0.14 (0.08) 0.26 (0.15)

Grad‐CAM þ boundary 0.81 (0.28) 1.49 (0.51)

Binary Integrated gradients 0.30 (0.08) 0.60 (0.15)

Integrated gradients þ boundary 1.22 (0.23) 2.35 (0.43)

Multi‐label Integrated gradients 0.28 (0.10) 0.54 (0.18)

Integrated gradients þ boundary 1.27 (0.20) 2.42 (0.38)

— Boundary 1.42 (0.18) 2.75 (0.33)

Note: The evaluation metrics are presented, accompanied by their respective standard errors enclosed within parentheses.
Abbreviations: CNN, convolutional neural networks; DSC, dice similarity coefficient; IoU, intersection over union; XAI, explainable artificial intelligence.
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TABLE 5 Mass explanation performance of CNN models by various XAI methods on the test dataset.

Disease Model Setting XAI IoU DSC

Mass VGG‐11 Binary Saliency map 1.46 (0.48) 2.75 (0.87)

Saliency map þ boundary 3.64 (0.79) 6.76 (1.38)

Multi‐label Saliency map 1.65 (0.59) 3.05 (1.10)

Saliency map þ boundary 4.23 (1.07) 7.60 (1.79)

Binary Grad‐CAM 0.62 (0.41) 1.12 (0.71)

Grad‐CAM þ boundary 5.75 (1.94) 9.20 (2.83)

Multi‐label Grad‐CAM 1.10 (0.74) 1.85 (1.20)

Grad‐CAM þ boundary 4.28 (1.58) 6.89 (2.30)

Binary Integrated gradients 1.79 (0.43) 3.42 (0.84)

Integrated gradients þ boundary 5.26 (0.99) 9.51 (1.66)

Multi‐label Integrated gradients 0.45 (0.15) 0.88 (0.31)

Integrated gradients þ boundary 4.26 (0.82) 7.86 (1.45)

ResNet‐18 Binary Saliency map 3.99 (0.56) 7.47 (0.99)

Saliency map þ boundary 6.30 (0.94) 11.35 (1.68)

Multi‐label Saliency map 3.68 (0.48) 6.97 (0.89)

Saliency map þ boundary 6.32 (1.07) 11.37 (1.81)

Binary Grad‐CAM 6.06 (1.86) 10.11 (2.98)

Grad‐CAM þ boundary 9.36 (2.40) 15.08 (3.78)

Multi‐label Grad‐CAM 3.27 (1.05) 5.76 (1.79)

Grad‐CAM þ boundary 5.71 (1.66) 9.73 (2.70)

Binary Integrated gradients 5.21 (0.77) 9.55 (1.30)

Integrated gradients þ boundary 7.48 (1.15) 13.29 (1.89)

Multi‐label Integrated gradients 3.99 (0.64) 7.44 (1.15)

Integrated gradients þ boundary 7.21 (1.07) 12.81 (1.86)

AlexNet Binary Saliency map 0.45 (0.18) 0.89 (0.31)

Saliency map þ boundary 2.61 (0.51) 4.95 (0.97)

Multi‐label Saliency map 0.04 (0.03) 0.08 (0.05)

Saliency map þ boundary 1.88 (0.74) 3.40 (1.30)

Binary Grad‐CAM 0.58 (0.20) 1.11 (0.43)

Grad‐CAM þ boundary 1.34 (0.43) 2.55 (0.82)

Multi‐label Grad‐CAM 0.00 (0.00) 0.00 (0.00)

Grad‐CAM þ boundary 0.43 (0.23) 0.82 (0.41)

Binary Integrated gradients 1.62 (0.36) 3.10 (0.69)

Integrated gradients þ boundary 5.24 (0.97) 9.47 (1.61)

Multi‐label Integrated gradients 0.02 (0.03) 0.04 (0.03)

Integrated gradients þ boundary 2.07 (0.64) 3.78 (1.12)

— Boundary 5.51 (0.74) 10.07 (1.30)

Note: The evaluation metrics are presented, accompanied by their respective standard errors enclosed within parentheses.
Abbreviations: CNN, convolutional neural networks; DSC, dice similarity coefficient; IoU, intersection over union; XAI, explainable artificial intelligence.
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TABLE 6 Pneumothorax explanation performance of CNN models by various XAI methods on the test dataset.

Disease Model Setting XAI IoU DSC

Pneumothorax VGG‐11 Binary Saliency map 1.71 (0.28) 3.30 (0.51)

Saliency map þ boundary 2.65 (0.31) 5.09 (0.56)

Multi‐label Saliency map 0.46 (0.15) 0.89 (0.28)

Saliency map þ boundary 1.89 (0.38) 3.59 (0.71)

Binary Grad‐CAM 1.17 (0.43) 2.14 (0.77)

Grad‐CAM þ boundary 1.59 (0.46) 2.97 (0.82)

Multi‐label Grad‐CAM 0.37 (0.18) 0.72 (0.36)

Grad‐CAM þ boundary 1.82 (0.82) 3.18 (1.33)

Binary Integrated gradients 1.34 (0.41) 2.56 (0.74)

Integrated gradients þ boundary 2.64 (0.54) 4.98 (0.97)

Multi‐label Integrated gradients 0.22 (0.13) 0.44 (0.23)

Integrated gradients þ boundary 2.02 (0.41) 3.86 (0.77)

ResNet‐18 Binary Saliency map 0.45 (0.10) 0.89 (0.20)

Saliency map þ boundary 1.61 (0.20) 3.12 (0.41)

Multi‐label Saliency map 0.51 (0.13) 1.02 (0.23)

Saliency map þ boundary 1.32 (0.20) 2.58 (0.43)

Binary Grad‐CAM 1.45 (0.71) 2.63 (1.25)

Grad‐CAM þ boundary 1.81 (0.74) 3.32 (1.35)

Multi‐label Grad‐CAM 0.69 (0.36) 1.28 (0.66)

Grad‐CAM þ boundary 1.25 (0.56) 2.25 (0.99)

Binary Integrated gradients 0.68 (0.20) 1.32 (0.41)

Integrated gradients þ boundary 1.59 (0.31) 3.04 (0.56)

Multi‐label Integrated gradients 0.72 (0.28) 1.35 (0.54)

Integrated gradients þ boundary 1.48 (0.38) 2.82 (0.69)

AlexNet Binary Saliency map 0.14 (0.08) 0.29 (0.15)

Saliency map þ boundary 4.16 (0.64) 7.62 (1.07)

Multi‐label Saliency map 0.49 (0.13) 0.98 (0.26)

Saliency map þ boundary 5.53 (0.74) 10.01 (1.28)

Binary Grad‐CAM 0.52 (0.31) 0.94 (0.56)

Grad‐CAM þ boundary 0.84 (0.26) 1.59 (0.48)

Multi‐label Grad‐CAM 0.28 (0.20) 0.50 (0.38)

Grad‐CAM þ boundary 3.75 (1.30) 5.95 (1.86)

Binary Integrated gradients 0.09 (0.05) 0.18 (0.10)

Integrated gradients þ boundary 4.67 (0.69) 8.60 (1.25)

Multi‐label Integrated gradients 0.19 (0.05) 0.39 (0.13)

Integrated gradients þ boundary 4.74 (0.74) 8.66 (1.20)

— Boundary 2.39 (0.31) 4.61 (0.56)

Note: The evaluation metrics are presented, accompanied by their respective standard errors enclosed within parentheses.
Abbreviations: CNN, convolutional neural networks; DSC, dice similarity coefficient; IoU, intersection over union; XAI, explainable artificial intelligence.
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model before it converged on external lung segmentation
datasets. These checkpoints, which varied in segmenta-
tion accuracy, enabled us to assess their effect on
downstream model explanations. Table 7 reports the IoU
and DSC of different checkpoints applied to VGG‐11
classifiers for binary diagnosis of Atelectasis, demon-
strating a positive correlation between the quality of
boundary segmentation and anatomic boundary‐aware
XAI performance.
Lastly, we empirically compared the computational

latency of our proposed method with baseline XAI ap-
proaches applied to VGG‐11 classifiers for binary diagnosis
of Atelectasis on an affordable NVIDIAGeForce RTX 2080
Super GPU. Our method, encompassing segmenter infer-
ence and boundary overlay, required an additional 0.058,
0.057, and 0.057 s per image, compared to 0.095, 0.128, and
0.250 s for the baseline Saliency Map, Grad‐CAM, and
Integrated Gradients. Given that experienced radiologists

typically take approximately 34 s to interpret one chest
radiograph [41], this increasewas clinically acceptable and
can be optimized through more advanced devices such as
the NVIDIA H100 Tensor Core GPU.

4 | DISCUSSION

In this study, we evaluated the performance of three
popular XAI methods and proposed a plug‐and‐play
method using the anatomic boundary of the lung pa-
renchyma to enhance model explanations. Under diverse
combinations of CNN architectures, XAI methods, and
classification settings, the proposed method consistently
improved baseline model explanations while maintaining
acceptable computational latency.
In our experiments, VGG‐11 outperformed ResNet‐18,

a sophisticated architecture with more layers, in terms of

F I GURE 2 Visualization comparison of thoracopathy radiograph explained by baseline and boundary‐aware Saliency Map. These
figures are open‐access from Deepwise AI Lab under the Apache‐2.0 license, permitting use, modification, and distribution.
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AUPRC, accuracy, and precision. The phenomenon of
“The deeper is not the better” has been reported in
various medical applications [42, 43] and was double‐
verified in our experimental results on thoracopathy
classification, implying that the conventional VGG‐11
was well‐suited for handling datasets characterized by
small sample sizes. While VGG‐11 demonstrated success
in classification accuracy, this did not ensure its superi-
ority over ResNet‐18 in XAI explanation, which was
illustrated by previous studies that deeper architectures
tend to possess better interpretability [3, 44]. Further-
more, in our experimentation with VGG‐11, ResNet‐18,
and AlexNet, we trained classifiers for both binary and
multi‐label classification. Across disease classification
and model explanation tasks, binary classifiers show-
cased superior performance compared to multi‐label
classifiers. However, these experimental results cannot
conclusively demonstrate the superiority of binary

classifiers over multi‐label ones. The diagnostic process in
clinical settings is inherently complex, often necessitating
multi‐label tasks rather than simplified binary classifi-
cations [45]. A promising approach for achieving high
accuracy in multi‐label applications involves leveraging
accurate binary classifiers. Shiraishi et al. [46] proposed a
referable method that combines binary classifiers using
advanced statistical techniques, including penalized lo-
gistic regression, stacking, and a sparsity‐inducing pen-
alty, to formulate solutions for multi‐class classification.
Lastly, the best‐achieved explanation performance by
anatomic boundary‐aware Grad‐CAM on Mass still failed
to meet the regulatory standards with a minimum DSC of
20% for clinically relevant areas [47], demonstrating the
existing gap between our model and real‐world deploy-
ment standards from the perspective of lesion segmen-
tations [48]. However, our primary focus was the
classification of thoracic diseases, with existing XAI

F I GURE 3 Visualization comparison of thoracopathy radiograph explained by baseline and boundary‐aware Grad‐CAM. These
figures are open‐access from Deepwise AI Lab under the Apache‐2.0 license, permitting use, modification, and distribution.
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F I GURE 4 Visualization comparison of thoracopathy radiograph explained by baseline and boundary‐aware Integrated Gradients.
These figures are open‐access from Deepwise AI Lab under the Apache‐2.0 license, permitting use, modification, and distribution.

TABLE 7 Atelectasis explanation performance by various XAI methods using different segmenters on the test dataset.

Segmenter

Boundary segmentation XAI

IoU DSC Method IoU DSC

0 93.23 (0.50) 96.43 (0.30) Saliency map þ boundary 5.89 (0.54) 10.69 (0.94)

Grad‐CAM þ boundary 2.74 (0.59) 4.95 (1.05)

Integrated gradients þ boundary 4.92 (0.51) 9.05 (0.84)

1 65.19 (1.35) 78.24 (1.07) Saliency map þ boundary 5.70 (0.48) 10.40 (0.82)

Grad‐CAM þ boundary 1.78 (0.48) 3.22 (0.89)

Integrated gradients þ boundary 4.42 (0.41) 8.21 (0.74)

2 42.82 (1.05) 59.37 (1.05) Saliency map þ boundary 5.59 (0.48) 10.26 (0.84)

Grad‐CAM þ boundary 1.21 (0.43) 2.15 (0.77)

Integrated gradients þ boundary 3.97 (0.36) 7.46 (0.64)

Note: The evaluation metrics are presented, accompanied by their respective standard errors enclosed within parentheses.
Abbreviations: DSC, dice similarity coefficient; IoU, intersection over union; XAI, explainable artificial intelligence.
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methods incorporating model explanations that can only
be categorized as weakly supervised lesion segmentation,
rather than fully supervised approaches. The standards
for evaluating the accuracy of classification models' ex-
planations remain unresolved [49]. Loh et al. [50] high-
lighted that operator‐level performance, along with
improved model interpretability, can lead to real‐world
deployment. Therefore, we suggest that classification
models lacking highly accurate XAI capabilities should
be considered as auxiliary tools to assist radiologists,
rather than as full replacements for their expertise.
Alternatively, we suggest the exploration of advanced
weakly supervised frameworks to achieve robust perfor-
mance in both thoracapathy classification and lesion
segmentation. For example, Ouyang et al. [51] developed
a classification model with advanced abnormality locali-
zation capabilities through a hierarchical attention min-
ing framework and showed that their method achieved
state‐of‐the‐art results in both tasks.
The low IoU and DSC values of baseline model ex-

planations revealed the issue of spurious correlations
between non‐pathological regions and radiological di-
agnoses. For example, the model explanations for Mass in
Figures 2–4 and Fracture in Figures 3 and 4 focused on
areas outside human bodies, such as medical devices [52]
or laterality markers [53], rather than clinically relevant
pathology. This phenomenon, known as shortcut
learning, is not exclusive to artificial systems of chest
radiograph analysis but is also prevalent in biological
systems for comparative psychology and behavioral
neuroscience [52]. For instance, DeGrave et al. [53] re-
ported similar observations that CNN relied on con-
founding factors for COVID‐19 diagnosis based on chest
radiographs, stressing the need for XAI to assess unde-
sired and unintended shortcuts in DL inference logic
before real‐world deployment [48]. To mitigate the
problem of shortcut learning, Ahmed et al. [54] proposed
to crop rectangular regions of the lungs as DL inputs to
quantitatively improve COVID‐19 classification accuracy
and qualitatively enhance model interpretability. In
contrast, our study offered several advancements: it
employed pixel‐level segmentation of lung regions, pro-
vided a comprehensive assessment of multiple thoracic
diseases, and presented a quantitative evaluation of
model explanations. While fully eliminating shortcut
learning may be unattainable, efforts to mitigate it and
better align learned solutions with intended outcomes
should be prioritized [52], which is the primary contri-
bution of our method.
Different from the previous applications of domain

knowledge in medical image analysis [55, 56] that
required additional annotation of clinical knowledge on

the target dataset, our method leveraged an external lung
segmenter to generate the anatomic boundary and
demonstrated its effectiveness through consistent im-
provements in model explanations. However, we
acknowledge the value of additional annotations like the
delineation of the lung parenchyma by clinical experts on
the target dataset. Given the prevalent domain shift
indicated by the anatomic boundary in Figures 2–4, the
external segmenter can be fine‐tuned using experts'
delineation to match the data distribution in the target
dataset and offer better constraints for model explana-
tions. Also, the proposed method relied on unified
boundaries of the lung parenchyma for different thoracic
diseases and future research may tailor fine‐grained
constraints by considering the characteristics of each
thoracic disease. Beyond chest radiograph analysis,
boundary‐aware XAI methods can be applied across
various medical imaging modalities. For example, DL
models have successfully segmented organs such as the
pancreas, esophagus, stomach, duodenum, liver, spleen,
left kidney, and gallbladder from computed tomography
images [57]. By focusing on specific organs with sus-
pected lesions segmented by DL models, XAI methods
could highlight potential regions of interest, offering ra-
diologists valuable reference points for diagnosis.
There are several other limitations of our work. First,

the explanation methods utilized in this study were
confined to three explanationmethods, including Saliency
Map, Grad‐CAM, and Integrated Gradients. The DL
modelswere limited to 3 lightweight architectures of VGG‐
11, ResNet‐18, and AlexNet. The segmenter was limited to
a default U‐Net architecture with a VGG‐11 backbone.
Considering the instability of XAImethods across different
model backbones [58], additional XAI methods such as
LayerCAM [59], DL models like Vision Transformer [60],
and anatomic boundary segmenters like MedSAM [61]
would offer a more comprehensive analysis. Second, our
experiments revealed that the anatomic boundary consis-
tently improved model explanations while the potential of
anatomic information as a regularization or a reward in
supervised learning [3, 62] or reinforcement learning [63,
64], respectively, remains unexplored, presenting a
promising avenue for future research. Furthermore, this
research exclusively explored 4 thoracic diseases, which
could be extended to other diseases such as pleural effu-
sion, edema, and consolidation in future studies [65].
Finally, rigorous statistical tests can be implemented to
explore the association between XAI performance and
geometric features of pathologies [65] and the association
between XAI performance and classification performance
for deeper insights into model predictive behaviors and
inference logics [66, 67].

iRADIOLOGY - 13

 28342879, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ird3.113, W

iley O
nline L

ibrary on [18/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



5 | CONCLUSION

The black‐box nature has long hindered CNN models
from gaining the trust of clinicians. In this study, we
proposed an anatomic boundary‐aware method for
improving XAI methods for CNN in diagnostic radi-
ology. We envisage that the consistent improvements in
model explanations will inspire future endeavors to
integrate clinical domain knowledge into medical image
analysis.
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